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SUMMARY

The presence of sound waves in one or the other of the fluid regions
on either side of a shock wave 1s made apparent, in the region under
superpressure, by acoustlc waves (reflected or refracted according to
whether the incident waves lie in the region of superpressure or of sub-
pressure) and by thermal waves. The characteristics of these waves are
calculated for a plane,.progressive, and uniform incident wave. 1In the
case of refraction, the refracted acoustic wave can, according to the
incidence, be plane, progressive, and uniform or teke the form of an
"asccompanying wave" which remains attached to the front of the shock
while sliding parallel to it. In all cases, geometrical constructions
permit determination of the kinematic characteristics of the reflected
or refracted acoustic waves. The dynamlic relationships show that the
yamplitude of the reflected wave is slwsys less than that of the incident
wave. The amplitude of the refracted wave, whatever its type, may in
certain cases be greater than that of the incident wave.

1. BASIC CONSIDERATIONS

1.0. Generalities

1.0.0 Subject of the report.- The reflection and the refraction of
sound waves by a shock wave are of interest not only in acoustics. These
phenomens mey also be utilized in aserodynamics to detect or messure the
development of shocks.

The present paper tests the theory by application to a relatively
simple case: that of a plane and uniform shock wave separating two
regions in both of which the fluid is 1in pressure and temperature equi-
librium, except for the acoustic phenomens; the incident acoustic wave
is plane, progressive, and uniform.

*"Réflexion et réfraction d'ondes acoustiques par une onde de choc."
Acustica, vol. 5, no. 3, 1955, pp. 149-163.
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This problem has already been treated in several publicaetions.
Burgers (ref. 1) and Blokhintzev (ref. 2), on the one hand, have studied
analytically the case of normal-incidence in a fluid without viscosity.
They show that, 1n order to satisfy the boundary conditions, it i1s
necessary to introduce, in addition to the reflected or refracted acoustic
wave, & so-called "entropy" wave. This nonprogressive wave involves tem-
perature fluctuations. It 1s the asympbtotic form of a thermsl wave in
the expression of which the damping terms have been eliminated. The
results regarding this wave thus obtained apply therefore only in the
neighborhood of the shock wave.

Sauer (ref. 3), on the other hand, indicated the conclusions to be
drawn from Huyghens' construction and demonstrated the existence of
incidences for which no refracted wave of a usual type (that is, a purely
longitudinal wave) can exist.

The purpose of the present report is to examine the points left
undecided by the preceding authors, nasmely: +the behavior of the thermsl
wave at large dlstance, and the nature of the phenomenon if there is no
refracted wave of longitudinal type present. We have thus been led to
treat the problem Iin e more general form: we made an analytic study,
taking Into account the viscosity and the caloric conductivity, for
arbitrary incidence.

1.0.1 Basic hypotheses and approximations.- (a) In the calculationy
we shall consider the shock wave as a discontinuity. The thickness and
the duration of the development of the shock are actually very small
compared to the wave lengths and the lengths of the acoustic periods.

(p) The equations governing the shock wave in a steady state remain
valid in the presence of acoustic waves. The slowness and the small
emplitude of the acoustic phenomena compared to the shock phenomens
Justify this hypothesis, at least in the first approximation.

(c) In the expression of the boundary conditions, we neglect the
small oscillations of the front of the shock wave about its mean position.
This is an spproximation which is justified-in a1l acoustic problems.

Due to the fact that the acoustic displacements are very small with
regpect to the wave lengths, the errors thus committed are of the second
order. ' -

lThis hypothesis 1s 1mplicitly contained in Burgers' calculstion.
This author calculates the motion of the shock wave by a method which is,
incidentally, not applicable to the case of oblique waves; then, elimi-
nating in the boundary conditions the terms of the second order, he
achleves & simplification which corresponds to our hypothesis.
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The boundary conditions will then be expressed in point form, that
is, that the reletionships expressing them contain only the values of
the quantities concerned taken from both sides of the boundary (front
of the shock wave) at one point of that boundary.

1.0.2 Irreversibllity of the shock wave and its consequences.- The
development of -a shock wave is Irreversible. Thus it is evident before-
hand that it will not be possible to satisfy the boundary conditions if
in the two reglons separated by the shock wave only acoustic phencomena,
that is, adisbatic phenomena, are introduced.

As a result, the small motions produced by the meeting between a
shock weve and an acoustic wave will be expressed in their general form
as it results from the work of Stokes and Kirchhoff, that is, taking
into account the viscosity and the thermal conductivity of the gases.

1.0.3 Separation of the boundery conditions.- Since these conditions
are in point form, one can divide them into two groups.

(2) Kinematic conditions which govern the nature and form of the
waves produced by reflection or refraction: When all the waves concerned
are plene, progressive, and uniform, these conditions msy be put in the
geometric form of Huyghens' construction. In the other cases it 1s
necessery to resort to calculation in order to determine the nature and

he form of the waves produced. This 1s what is done for instance in
optics in order toc treat the problem of totel reflection and to obtain
the Cauchy wave.

The kinemstic conditions simply express the fact that on the
boundary surfece, the development in space and time of the phenomens
associated with the reflection or the refraction is the seme. Thus it
is not necessary to use, for expressing them, the theoretical relation-
ships which govern the shock wave.

(b) Dynemic conditions which come into consideration only for
calculating the amplitude of the phenomens whose nature has been deter-
mined by the kinemstic conditions.

We shall study these two groups of conditions separately.

l.l. Characteristics of the Shock Wave.
Boundexry Conditions

1.1.0 Definitions, notation.- In designating the two regions of the
fluid separated by the shock wave we shall avoid using the terms upstream




I NACA TM 1409

and downstream which, in aerodynemics as well as in hydraulics, give rise
to ambiguity. IFf the shock wave .is motionless (wind tunnel, hydraulic
Jump ), the region downstream is under superpressure. If the wave is
propageted in a fluid at rest (shock tube, tidal wave), the upstream
region is under superpressure. ’

Thus our notation will be

Ey = region under subpressure, extending from S +toward the positive x
El = region under superpressure, extending from S toward the

negative x
8 = front (plane) of the shock wave separating the two regions, per-

pendiculer to the axis of the x
We shall use three systems of axes:
oxgyz fixed with respect to the fluid in the region Eg
OX1¥2 fixed with respect to the fluid in the regilon E;
oXyz fixed with respect to the front of the shock wave S
With

8g > O Dbeilng the velocity of propasgation of the front S in the fluid
contained in Eg

8 > O the velocity of propagation of S in the fluid contained in Eq

U the difference between the flow velocity of the fluld in El
and its flow velocity in Ep

We have:

X] =X - Ut  X=2x5-80 =x - &t (1.1.1)

and 8y -~ 8 =T (1.1.2)
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Finally we define:

Region EO Region E;

Pressure Po Pl
Specific mass Po Py
(1.1.3)
Absolute tempersture To Tl
Velocity of sound co cq

We shall tske as the independent verigble defining the amplitude
of the shock wave the ratio:

= PO/Pl (l-l.}'l-)

't decreases from 1 to O in proportion as the emplitude of the shock
incresases.

. We shsell use dimensionless functions for describing the phenomenon.
We give them below with their expressions as functions of ¢§ derived
from the classical theory of shock waves.

Putting
_ 7+ 1
k= v -~ 1
1/2
r=20_ (TO - |se s e) /2 T (2.1.5)
ey Ty 1+ pé
Po_1+ue_ &
R = , BFE 2 (1.1.6)
y=U o (p-2)1-¢) (1.1.7)

[(u +1)e(u + £)]/2
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T
a 1/2
A o= _i = [ﬁl%%] / A <1 (1.1.9)

Finally, we shall have to use the following functions in which
appear the derivetives R' and Y' of R and Y with respect to E:

(u - 1)[1: + (n+ 2)§] o (1.1.10)
2(u + g)[}u + 1)e(r + 5):'1/2

gY' = -

p - 1\2 (n + 1)%
; 1) ((1 e+ 8 l) (1.1.11)

+

' 1/2 ’
i.r_[_w+e ]V : (1.1.12)
R ¢ e(1 + pe)

G=_E+_1§IYI
p-1 -

_n+ (ut2)efur1\/2
o 2(u+ ) <l + u&) (1:2.23)
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- _p+1 v o Y
SRSTANES

1l + (p + 2)¢ L £ 1 1/2
lu B - - Il b+ ’
27 n+ € 2 B+ L{[E(p + §) (1.3.14)

Tebles I and II give the values of these various functions, most
frequently calculated according to rule which gives sufficient accuracy
for our present purpose.

1.1.1 Wave masgnitudes.- The presence of waves with small amplitude
which have an acoustic origin causes in the regilons Eg eand E; small

variations of the pressure, the specific mass, and the temperature sgbout
their mean values.

In order to represent them we set:

® = 3P/P = relative excess of pressure
S = Bp/p = relative excess of specific mass, or condensation (1.1.15)
& = 8T/T = relative excess of tempersture

In the case of usual acoustic waves, ®, 8, and € are very smell
and may be considered in the calculation as infinitesimals of the first
order.

With regerd to the vibratory velocities, we shall hsve to consider
only the component u along oXx.

1.1.2 Boundary conditions.- According to our hypotheses, the boundary

conditions must express that the relationships (1.1.4) to (1.1.7) which
govern the shock wave are maintained in the presence of oscillastions of
acoustic origin.

By differentimtion of (1.1.4), (1.1.5), and (1.1.6) we obtain

B - By = -t/ (1.1.16)
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91 - 8p = -2 [~ 88 = 2t T(&; - &) (1.1.17)
8y - 89 = - g— Bt = E %(‘51 - 63) (1.1.18)

In order to obtain, starting from (1.1.7), a correct expression
one must teke some precautions. One could be tempted - as we were -~ to
assume, &s it is usual in acoustics that the presence of the acoustic
waves does not modify the sonlc veloclties co and Cqe

This approximation remains correct in the interior of the reglons
eand E; but at thelr boundaries 1t cennot be assumed; the relation-

ship (1.1.5) contradicts it. Thus one must differentiate (1.1.7) with
the assumption that S is varisble. One then obtalns

8U = coBY + Ydcg (1.1.19)

with 8U = u; - uy, the difference between the ccmponeﬁis u; and ug
of the vibratory velocities being given by

8Y = Y'd¢ = —§Y'(<T)l - a‘;oj

On the other hand, c¢py 1s given by the classical reletionship

% = 7%o/P0
whence
e /o = &o/Fo - BpgfPg = @ - 8o

As we shall show later on in our problem, only incident acoustic
waves can exist in the region Eg. The oscilletion phencmenon is

therefore adiabatic which permits us to write sy = -0/7; hence

Sco/co = 50/(u + 1)
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The relstionship (1.1.19) may then be written

Ul - Yy ( ¥ . gY')cBO - EYD) (1.1.20)

Co IJ-+l

It will be convenient to use this equation in the form
ci - _1 cg -
cyuy -G > oy = £\eotg -H - wy (1.1.21)

vhere Iy G, H are the functions defined, respectively, by the
relstionships (1.1.5), (1.1.13), (1.1l.1k).

1l.2. Waves of Smell Amplitudes in Gases

1.2.0 Msthematical representation.- The mathematicel representation
of this problem is a result of the work of Stokes and Kirchhoff. An
outline for it can be found in Iord Rayleigh's book (Theory of Sound,
vol. II., section 24T). We recepitulate it with our notation.

u, VvV, W components of the veloecity of a particle

P gspecific mass of the gas at rest

s = 8/p condensation

P pressure of the ges at rest

®w =8/P  relative excess of pressure

T gbsolute temperature of the gas at rest

8 = 3T/T relative excess of temperature

v4 ratio of the speclfic heats

14 coefficlent of kinemstic viscosity

k coefficient of thermsl conductivity, according to Kirchhoff

equal to 5v/2

c sonlc velocity



10 - ' NACA TM 1409

Equation of continulty
ds/dt + du/dx + dv/dy + dw/dz = O (1.2.1)

Dynamic equations

du . 2 ¥ _ 1 3%
gc- + -;— -a—x- = 'V<A2'L1 - -3- Bt ax) and similarly in y,=z (1'2'2)

The logarithmic differentiation of the equation P = prT yilelds
the equation of state

®=8+6 (1.2.3)

Since the motions are very small, the terms of the second order are
neglected. The total relative temperature excess € 1is the sum of the
excess Og, resulting from the adigbatic compression, and the excess 8y,
stemming from the conductivity. Thus we have

8g = (7 - 1)s aet/Bt = kA%

Hence we obtain finally the thermal equation

36/3t = (7 - 1)ds/3t + kA%® (1.2.4)

The calculation then is performed ds follows: We eliminate &
utilizing (1.2.3). We then assume that the different variables depend
on the time only through the factor et (b can be complex). The
factor h therefore replaces the sign of differentiation with respect
to time.

Equations (1.2.1), (1.2.2), snd (1.2.4) then are written
dou/dx + dv/dy + ow/dz + hs = 0 (1.2.1')

hu - vA%u = -OM/dx, and similarly in y,z (1.2.2')

he - kA6 = (¥ - 1)hs (1.2.47)
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where we have set

M= (Bfr + hv/5)s + (c’2/7)e (1.2.5)

We eliminste s between (1.2.1') and (1.2.47) which gives

du/dx + dv/dy + dw/dz = -(be - xA%6)/(y - 1) (1.2.6)

and M is written

2
M= |(1+Lby)e - X(14+2BYA% (1.2.5")
7-1< 3 .2/  hy 2

Iet us differentiate equations (1.2.2'), respectively, with respect
to X, ¥y, 2, and add term by term. We take (1.2.6) into account and
eliminate M, using (1.2.5'); there remains

2
h%8 _ bk . 4 hv k Ly hv> by o
= (1 + 2 + : 02>A2e + 7(1 + 3 A6 =0 (1.2.7)

a particular solution of which is given by the form

where B;, By are constants, and Q; eand Qp functions of x, ¥, 2z
which satisfy the reletionships -

2% =mfa; APy = mRp (1.2.9)

in which m]2_ and m% are determined by the equation

@) e (@ ) o o
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with o being the dimensionless number
_ 2
= hk/c® (1.2.11)

The components u, v, w of the vibratory velocity then derive,
except for the common factor eht, from the potential @Q; + Qp. The

constants B, and B, are taken from (1.2.6) which gives

B, = (r - 1) — (1 =1,2) B (1.2.12)
i

The condensation sy corresponding to Qi- is

5; = —(m%/h)¢ieht - (1.2.13)

The relative excess of pressure 51 is obtained by combination of
(1.2.3) and (1.2.13)

- 2 km2 - 71’1 bt
s = _j- —_.._ Q e
i T ) 1

(1.2.14)
kmi - h .

1.2.1 Simplifications, separation of the wave types (acoustic and
thermal).- In the case where the origin of the waves 1s acoustic, we
shall have h = iw - 8. In the relationship (1.2.10) which determines
the ratios m/h, h appears only in the dimensionless number ¢ = kh/c®.
When this number 1is very small, the roots of (1 2.10) assume very simple
approximate values. In air, in cgs units, = Q. 146 thus = 5v/2 0.365.
At the usual temperatures c¢ 1s of the order of 34 x 107 cm/s. Finally,

if we restrict ourselves to the upper limit of an - already very ultran-
sonic - frequency of 80,000 cycles per second, the circular frequencies

are smaller than 0.5 X loss'l. Under these conditions, ]sw/c2 is less
than 1.6 X lO'h.

We are therefore justified in assuming that the mumber o will ' _
remein very small as long as the damping factor 8 1s not very large.

We shall therefore make -the corresponding simplifications, except
for verifying - when the occasion arises ~ that the condition o< 1 1is
always satisfied.
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The roots of (1.2.10) assume then the approximete values

me ~ (b/c)® oS =~ yh/k (1.2.15), (1.2.16)

The first gives us a velocity potential for an acoustic wave in
its usual form. The second gives us the potential for waves of thermal
conductivity.

In the case of plane waves, with the coordinaste 2z eliminated by
a suitable choice of axes, we shall be able to write D

(ox+By)
Qy = Rt | (1.2.17)
with of + 82 = 1, in order to satisfy (1.2.9).
We then obtain the table of the following values:
Acoustlc wave Thermal wave
q | eth(axtpy)/c e\ 70 /k( axtBy)
8 | -(n/cB)qeMt ~(7/x)Qel®
0 - ~1)s -8
(v ) (1.2.18)
® 78 o]
u tcas 'T'\J kh/’)'ccS
v tcBs ":\f kh/')'Bs
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1.3. Numerical Tebles of the Different Fusictions

Introduced In the Calculation

Table I
¢ r R R! Y -EY! Ay A
1 1 1 0.71% |0 0.71h |1 |1
0.9 |[0.985] 0.95 |0.735 [0.0756| 0.726 | 1.046 | 0.956
0.8 0.97 | 0.85 0.76 |0.160 | 0.737 |1.10 }0.910
0.7 0.95 | 0.78 0.78 |0.26 0.756 | 1.17 | 0.86
0.6 0.93 [ 0.70 0.80 J0.%9 0.78 |1.25 {0.81
0.5 0.90 | 0.62 0.8%3 10.53 0.81 |1.36 [ 0.76
0.4 0.87 | 0.53 0.85 [0.72 0.85 |1.51 |o.70
0.% 0.82 | 0.45 0.88 |0.96 0.92 |1.73 | 0.63
0.2 0.75 | 0.36 0.91 |1.38 1.0k }2.10 | 0.56
0.1 0.62 | 0.26 0.94% [2.18 1.35 [2.95 |{0.48
0.05 [ 0.48 | 0.214 | 0.956 |3.27 1.82 [ L4.15 | 0.431
0.025] 0.36 | 0.191 | 0.964% [L4.75 3.18 |5.86 | 0.405
0 0 0.1667 | 0.973 w o0 o 0.378
Teble IT
£ J 1/RT H G
1 0 1 1 1
0.9 0.0007 | 1.094k 1.00035 | 1.00035
0.8 0.0031 | 1.21 1.00168 | 1.00165
0.7 0.0079 | 1.36 1.0052 1.0044
0.6 0.016 1.55 0.012 1.009
0.5 0.029 1.80 1.025 1.018
0.4 0.051 2.17 1.046 1.030
0.3 0.085 2.Th 1.090 1.054
0.2 0.1h4k4 3.76 1.185 1.092
0.1 0.254 6.18 1.45 1.166
0.05 0.351 9.65 1.89 1.228
0.025 | 0.420 |11.hke 2.56 1.270
0 0.510 o o 1.323
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2. THE KINEMATIC CONDITIONS

2.0 Statement of the Problem and Formulas

2.0.0 General forme - apparent circular frequency Q and phase
velocity w at the front of the shock wave.- Let us consider in one of
the regions Ey or E; an acoustic field incident on S which we shall

represent by the velocity potential

o(r,y,2,t) (2.0.1)

with & and x having the subscripts (O or 1) corresponding to the
region concerned.

This field produces at the front S ' a phenomenon which with respect
to the axes oXyz fixed to S will be governed by the form

Wys2z,t) = 0(at,y,2,%) (2.0.2)
where & has the same subscript as - 0.

As a result of the fact that our boundery conditlons aere in point
form, there must appear at 8 for every field associated with the
incident field by reflection or refraction a corresponding phenomenon
whose spatial distribution and development with time are governed by the
form . This condition of kinematic order is independent of the dynemic
conditions which derive from a particular choice of the equationse con-
necting the values of &, 8, u, 0, taken from both sides of S.

Since we limit curselves to the case where the incident wave is
plane, progressive, and uniform, we have

o = ol®[t-(xcosprysing)/c] (2.0.3)

with @ being the angle of incidence.

The function ¢ which represents the phenomenon at S then assumes
the form o

y = elo(t-y/w) (2.0.4)
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with
2
-1 -Acspa=dh* (1 g At : (2.0.5)
@ 1+
w_._ 8 _l-Acos®_1-A¢+(1+A)" (2.0.6)
c wsein 9 sin @ 2T e
where -
1
= tan =
T an = ¢

c, A, w, @, T should have the subscript of the region which contalns
the wave. -

2.0.1 Condition necessary for a plane, progressive, and uniform
acoustic wave to be an incident wave.- Let us consider a mobile parti-
cle M carried slong by the waves and advancing on a sound ray. If M
approaches the S plane with increasing %+, the wave is incident. If
it recedes from it, the wave is reflected or refracted.

With respect to the axes fixed to the fluid in the region considered,
the velocity at which M 1is displaced toward increasing x i1s ¢ cos Q.

In the reglon under subpressure Eg,, the distence of M from S
is, except for a comstant, (cq cos @y - ag)t. It decreases therefore

constantly regardless of what @p may be since we have ag > coe Con-~
sequently, any plane, progressive, and uniform weave present in Ey 1is
an incident wave.

In the region under superpressure Eq, the distance from M to S
is, except for a constent, (&g - ¢ cos @p)t.

Since &4 is less than c;, two cases are possible

(a) a] - ¢y cos 91 < O where l¢l| < arc cos Ay (2.0.7)

or [y <\(1 - & 0/(1 + &)
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The wave is incident.

(b) a1 - ¢ cos @1 > O where arc cos A < [P7] < = (2.0.8)
1 1 1 1 1

or |7y > (1 - A)/(1 + A1)
The wave is produced by reflection or refraction.

2.0.2 General relstions.- The plane waves, whether acoustic or
thermal, are governed by the form

oht-m(ax+By) (2.0.9)
with
o2+ p2=1 .
and
m = th/e acoustic waves
(2.0.10)

+\[yh/k thermal weves

m

On the S-plane which is displaced at the velocity a in the reglon
considered, the exponent of (2.0.9) must assume the form iQ(t - y/w);
hence the relstionships.

iQ = h - ama i0/w = pm (2.0.11)
that is
a=(h -~ 10)/am B = i0/wm (2.0.12)
o + 52 =1 gives
(am/2)2 + (a/w)2 - (h/2 - 1)2 =0 (2.0.13)

Replacing, in this equation, m by its value teken from one of the
relastionships (2.0.10), we obtain en equation which will determine h as
a function of Q and w. We then take m, a, and B from (2.0.10) and
(2.0.12). :
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2,1 The Reflected or Refracted Thermal Wave

Inserting into (2.0.13) the value m@ = yh/k gives

(8/2)2 - 2(1 + yeB/2xa)n/a - (1 - a2/w2) = 0 (2.1.1)
whence
]3=1+L°£1t\ﬁ+(m)2+21§9- (2.1.2)
Q k0 yew a2

In order to be suiteble for our purpose, the root must have a
negative real part: a wave which vanishes when +t increases indefinitely.

As we have seen, the dimensionless number kﬂ/a2 is very smell. On
the other hend, (2.0.6) gives &/w = (w/c) sin @ (where w, c, and ¢
have the subscripts of the region which contains the incident wave ).

Consequently, kQ/aw = (kw/ac) sin @ is the same order of msgnitude
as kﬂ/éz, that is, very small.

If we then teke the spproximste value of the radical of the formula
(2.1.2), we see that the suiltable root is the one where this radical has
the negative sign.

In order to obtain an spproximate value of h/Q, we mugt expand the
radical up to the terms of the second order; the terms of the first
order disappear and we obtain

LR 2P

-

h = (2.1.3)

One cen see easily that

wn_ 1 1x%02(s2 + w2)

c? yc? 8%

remains always very small. The approximatibn made in order to separate
the thermal wave from the acoustic wave 1s therefore valld.

On the other hand, (2.1.3) shows that h is reasl and very smsll.
Consequently, the thermal wave is not perceptibly oscillating and 1ts
demping is slow.
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From the value of h we derive
m = iﬂ\}a2 + aw - | (é.l:h)

W

@ = = ————— = cos Py
Va2 + w2 .
(2.1.5)
B = ..__E'__ = gin q)_t
e 1+ y2 S

The spatial distribution of the temperature excesses and of the
condensations 1s therefore sinusoidal. The wave is oblique. It is not
progressive and dies out on the spot.

As a result, this wave can originate only behind the S-plane (the
movement of which 1t cannot precede). Thus it can be present only in
the region under superpressure E;j.

The gbsence of any thermal wave in the Ey region Justifies there-

fore the method by which we have established the boundary condition
(1.1.20).

The potentisl @ = e-m(ax+BY) 1g then written
q = e10(x/a-y/¥) (2.1.6)
The quantities fixed to the wave then are (see 1.2.13)

e -
St=-£tht e-t=—8-t m.b=0

and the velocity components
Uy = -1 — 84 Vg = i— S¢ (2.1-7)

These values will be useful for simplification of the dynamic
conditions.
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2.2, The Reflected Acoustical Wave -

In this case, the incident wave 1s, like the reflected wave, situ-
ated in the reglon under superpressure E;. The reletionships (2.0.5)

and (2.0.6), connecting the kinematic characteristics @ and ¢ (or T)
of the acoustic wave with the circuler frequency Q and the phase
velocity w which can be observed at the front of the shock wave, are
simltaneously valid for the incident wave (wl, Py, Tl) and the

reflected wave (wi, P15 Ti).

Elimingting O and w, we obtain

nri= (2 - Al)/(l ¥ h) (2.2.1)

fi _ sin @y - (l - Al)2 + (l + A%)T%
wy

sin 9] (2 - &) (2 +a)(2 + 8) (2.2.2)

(2.2.1) shows thet to the incident wave (Tq <\f(1 - A)f(1+ Al))
there corresponds indeed a reflected wave[?i'> d(l - 1_)/(l + Al)]' -

(2.2.2) gives the ratio of the circular frequencies (perceived by
an observer carried along by the fluid) of the incident wave and of the
reflected wave.

When P1 lncreases from zero (normal ircidence) fo arc cos Ay
(1imiting angle of incidence), 7T, increases from O ‘to 1-A 1+ 4
1 1 1}
wiﬁnl increases from (l - Al)/(l + Ai) to 1.

Thus we have

l-A._L wl sin @1 1+ A
1_ 1 1
TFA &t = I<gme <TTg

Due to the fact that any plane, progressive, and uniform incident
wave produces a reflected wave of the same type, Huyghens' construction
is valid.

- ——————
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2.3. The Refracted Acoustic Wave

2.3.0 Generalities - separation of the two types of refracted waves.-
In order for refraction to occur, the incident wave must be situated in
the region under subpressure Eg. On the other hand, any plane, pro-

gressive, and uniform waeve situated in E; 18 an incident wave and will
give rise to the production of refracted waves. T

The phase velocity w of the phenomenon produced on S by the
incident wave is given by (2.0.6) R

w0 ® 5 - (a - 3) e (2.3.1)

21"0
where
Ap>1
When the angle of incidence @ varies from -n to +m, To Varies

from -o to 4=, W increases constantly and its variation is given by
the following teble: - )

Py | -® -arc cos l/AO 0 arc cos l/Ao +1t
-1 -1 '

T - - ——Ao 0 + ———AO +o0

0 Ag + 1 A + 1

W - 0 4o —oo 0 oo

The same phase velocity w can therefore be produced by two waves;
thé incidence of the first lies between -x and O, that of the second
between O and +x, with the first being larger in sbsolute value than
arc cos l/Ao, the second smaller than that value. The corresponding

values of T, To» and 'rb, relative to these two waves, are connected
by the relationship
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-ro-ré = -(Ao - l)/(AO + l) (2'3'2)

Finally, (2.0.6) shows us that the circular frequencies of the two
incident waves which produce on S ‘the same phenomenon (equality of w
and of Q) are in the ratio

wé/wo = Isin Qo/sin ¢6|

Thus, the acoustic phenomenon observed on S, and all the more in
the interior of the E, region, may be produced indifferently by one

or the other, or any linear combination, of the two incildent waves
described ebove. Not a single observation made in El can serve to
differentiate.

The character of the refracted wave depends on the sbsolute value
of the phase velocity w. If |w| is greater than c% - a%, the

refracted wave is plane, progressive, and uniform. If |w| is less

than c% - a%, one cannot make any plane, progressive, and uniform
wave in E; correspond to it. The refracted wave then assumes an
exponential structure and we shall call it accompanying wave.

The angles of incidence @0 corresponding to the value of w, at
which one passes from one type of refracted wave to the other, are given
by

_ i\jci - ai + ci - ai + ag - ég
To = : (2.3.3)
° 8 *

When |T is outside the interval defined by the above boundaries,

the refracted wave is plane, progressive, and uniform In the opposite
case we obtain the accompanying wave.

Expressed as functions of the theoretical relationships which
govern the shock wave, the two limiting values of Ty &are written

T

0

. \’u(l - &) £+\1 +pe o+ (T + €) (2.3.4)
T Vi o+ &+ (k + 1)E
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The values of the corresponding limiting sngles are given in
figure 1.

2.3.1 Plane, progressive, and uniform refracted wave: w2 > c‘g-_ - a?_.-

The equation (2.0.6) applied to the two regions E, end E; which con-

tain the incident wave and the refracted wave, respectively, gives the

relationship which conneets To and Ty

2 2
ey - 81 + (eg +89)7y _cg-8g (co + 8g)Tg
1 To

(2.3.5)

Since 7o 18 governed by the incidence Pos T is determined by
an equation of the second degree of which only the root, which is 1a.rger
than \[(cl - a1)/(ey + a3), corresponds to the refracted wave. The
other root gives in El the incident wave which could, by reflection,
produce the refracted wave.

Thus we have

_cg-egt (co + ao)TS "'\/E‘O - ag + (cg + a.0>-rg_le - h(ci - a.%_)-rg
1 2(cl + a.l)'ro

(2.3.6)

wvhich we may write, using the dimensionless functions AO, A I,

l,

-t (e i B [ - 2 + (e 2 - (2 - )

1+ A
o Lo
T 0

T, =

(2.3.6')

The value of the circular frequency w, of the refracted wave,

perceived by an observer who is carried along with the fluid in the
region E;, is then given by (2.0.6) whence we derive
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(2.3.7)

For an observer fixed to the axes, carried along with the fluid
situated in Ey, there occurs a shift in frequency and the circular

frequency perceived will be a)i.

22
I

1= a.\l(l + -B—l cos qu)
. (2.3.8)
sin @

w
X —_0 0
<1+Pcosq91) sinCPl T J

2.3.2 The accompanying acoustic wave we < c]2_ - a%.- We shall show

that the refracted wave may then be represented by a velocity potentisl
of the form

o = e(iml-ﬁl)‘b+l:( 1+ )z (A 4" )a/cl (2.3-9)-

¢, must satisfy the general equation of sound A2¢1 = (l /cg,?_)a%l /31;2
which involves the relationships

B-nfr®onBatfoof fn+fn = (2.3.10)

On the other hand, on the front S, that is, for x = ajt, the
exponent of ®; must take the form 1Q(t - y/w) whence

ml-al+f!-(in+§)=m in *+ '=-1% (2.3.11)

C1 c1

From (2.3.10) and (2.3.11) we then take

Wy /2 = 1/(1 - A§> (2.3.12)
T e
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nja = —Al/<l - AE)_= ~Ayey [0

g1
Q Al

o jo

n'/Q = -eq(w

¢ =0

25

(2.3.14)

(2.3.15)

(2.3.16)

(2.3.17)

The equation (2.3%.13) shows that this type of wave exists only if

the phase veloclity w 1is smeller than cl\Jl - A& =~Jc§ - a%;

conse-

quently, this wave sppeers only in the case studied in the present '
section. On the other hand, this condition of existence implies that
we have cy > a5. No wave of this type can therefore gppear in the Eo

region where o is less than ag.

Before describling the accompanylng wave, we must verify that the
condition o << 1 1s satisfied, thet is, that we have always kB/c% < 1.

Replecing € in (2.3.13) by its value teken from (2.0.6), we obtain

_ \ll - A% - (wje P
AT

> gin QO Q%
1- Al ¢

HlB

hm/cg is very small; Ay and I' lie between O and 1;
have a very small kS/c%.

In order to mske the characteristics of the wave evident,
take the axes o0XY vwhose origin o 1s carried along with the
end is displaced toward increasing y at the velocity w. We
set

(2.3.18)

thus we

we shall
S-plane
therefore

(2-3-19).
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The potential @l then takes the form
i X+in!
o) = e[_( ”*g) -1 ja/"l (2.3.20)

which 1s independent of +. . -

The wave 1s therefore motlionless with respect to the axes oXY.

X/c -
Its amplitude decreases as eg / 1 if one moves awey from the shock
wave (toward the negative x). This wave constitutes therefore a
phenomenon which runs behind the shock wave while sliding at the same
time transversely at the velocity w. These characteristics justify
the name we gave 1t: accompanying wave.

Iet us define its structure in detail. Toward incressing Y the
phenomenon is spatially periodic and its wave length is

7\Y = 21(Cl/T]' = 21!W/Q (2-3.21)

which was, besides, evident in view of 1ts origin. Toward decreasing:
X +the phenomenon is spatially of a damped pseudoperiodic nature. Its
wave length is -

A = 2:rcl/'q = 2n (cje_ - a%)/aln (2.3.22)

The planes of equal phase, or pseudo-wave planes are given by:
X 4+ 'Y = const. They form, therefore, with the S-plane of the shock
wave the angle X given by

tan X = -n'/n = —(c% -‘af»hlw (2.3.23)

This formula permits a very simple geometric construction of that angle.
The rate of damping of the wave toward the negative X 1is
¢ ' le c% - a7

= : -1 ‘ (2.3.24)

€1 2. g
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It 1s zero for the limiting values w = % . It increases when

w decreases.

2
Cl-a

2
1
For w = 0, we have on the one hand Q = 0, on the other

Qfw = wq sin ¢O/°O and cos P = co/ao

c then assumes the value
1/71

2
(E; __ % Y% %%
U0 2 50 %

which may be expressed as a function of the variable ¢ which defines
the amplitude of the shock wave, and of the wave length ko = 2ncdq)
of the incident wave in the region Eg

&1
<cl>w=0 7\0 IJ- + (2-5-25)

In order to calculate the characteristics of the accompanying wave
from those of the incident wave, 1t suffices to replace Q and w in
the relations (2.3.12) to (2.3.16) by their values taken from (2.0.5)
and (2.0.6), namely

Ce)
i

w (eo - 8y cos Plfeg

=
1l

(CO ~ &g cos ¢O>/sin P

The formulas obtained ere compliceted. It is unnecessary to write them
here explicitly.

2.4. Geometric Constructions

2.4.0 Huyghens' construction (fig. 2).- With the plane of the
figure being motionless with respect to the region under subpressure
Eg, S and 8' &are the positions of. the shock-wave front at the times

t =0 and t = 1. The distance 8SS' is 8g:
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Iet us consider in the region Ejy, to the right of S, a plane,
progressive, and uniform wave which intersects S at the point %

at the time +t = 0. At the time +t = 1, this wave will intersect S!
at & point D and its potential prolongation will be tangent to a
circle Cp, with the radius cy and the center Qp, entirely situated

to the left of S' since cq < 8y

Assume B to be the foot-of a line through OO perpendicular to

S'. BD will be equal to the phase velocity w observed on the shock-
wave front. :

We can always make two tangents to the circle Cy pass through D.

The figure therefore confirms that in the region EO two waves IO’ Ié

exist to which the same phase velocity w corresponds on S. These two
waves are incident becasuse the point of contact of the tangents drawn
from D to Co is to the left of S: +hat 1ls the region where EO is
virtual.

Iet us now consider the region El‘ The fluld flows there toward

the right, with the veloecity U. A plane wave passing at the time
t = O through the point Oy, will, at the time t = 1, be tangent to

a circle Cl with the radius Cqs whose center Oy ié at the distance
0001 = U from OO.

OlB is therefore the veloclity aq of the shock-wave front with
respect to the fluid filling up the region E;. Since 87 1s less than
¢y, the circle C; intersects the straight line S' at two points, F
and F°'.

The incldent waves I, eare those whose point of contact with Gy
is to the right of S' (there where E, 1is virtusl); the reflected or
refracted waves touch ¢, to the left of S!'.

Let us now assume D to be a point on S' situated outside the
segment FF'. From this point we may draw two tangents to Cq, one of

which corresponds to an incident wave I, while the other corresponds
to a reflected ar refracted wave Ry -

Thus, if we assume a wave Ry in E;, this wave détermines the

point D, and we see that 1t can have been prdduced either by reflection
of the wave I; (situated in E;) or by refraction of one or the other

of the waves IO and Ié situated in EO'
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Finally, it asppears that when the point D lies between F and
F', there correspond to it two more possible incident waves, IO and

Ié in EO’ but none in El since D 1lies inside the cirecle Cy.

The cross-hetched sectors of the figure show the angles of incidence
Pq for which this condition is realized. Huyghens' construction thus

does not permit us to know what is happening in the region E,.

2.4.1 Construction of the accompsnying wave (fig. 2).- Formula (2.3.23)
gives the angle X which is formed by the pseudo-wave plane (plane of
equel phase) of the accompanying wave and the S-plene. It lends itself
to a simple construction.

Let us draw the tangent from the point F' +to the eircle C,.

It intersects the stralght line 0B &t G. OlG = OlF'E/OlB = cla/hl.
Since 04B 1is equal to aq, we shall have

Since, on the other hand, D;, situated between F and F', is the

point where the incident wave intersects S' at the time +t = 1, we
have BDl = w. Consequently

2
_BG =_°l/a1'a1
BDl W

= tan X

Thus, the angle BD{G is the desired angle X. The prolongation

of the straight line GDl, to the left of 8', gives the pseudo-wave
plane of the accompanying wave.

The construction thus shows very clearly the varistion in direction
of this pseudo-wave plane as g function of w, that is, of the position
of the point Dl' -

Figure 2 shows these different constructions for a whole series of
incidences. The arrows placed on the traces of the various waves indi-
cate the direction of their propegetion. The sketch corresponds to the
case where the shock wave involves an sbrupt doubling of the pressure,
that is, where one has '

PO/Pl = g = 0.5
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2.5 Use of the Acoustlic Phenomens for the-Study

of the Shock Waves

The kinematic conditions are expressed by formulas into which
enter only veloclity ratios: sonic velocity, veloclty of the wave front,
flow veloclty. They do not stipulate the velidity of the theoretical
relationships which express these velocities as functlions of the shock
emplitude.

Moreover, in the case where the shock-wave front is preceded or
followed by compression or expansion phenomens which entail varistions
in tempersture and in the flow velocity of the fluid, the acoustic waves
undergo continuous refractions. These phenomena, incidentally, are well
knowvn.

Consequently, the experimental study of the kinematics of the
acoustic waves reflected or refracted by a shock-wave front furnishes
a research method which is probebly not without Interest for aerody-
nanicists. For undertaking it, we may consider photographlc, even
motion-picture methods which show the form and the deformations of wave
fronts, or microphonic methods which detect the variations of frequency.

One will note that a large amount of information can be collected
solely by the study of the reflection of waves, that is, by means used
exclusively in the reglon under superpressure E,. '

3. DYNAMIC CONDITIONS

3.0. Elimination of Thermal Waves

Let us start from the relationships established 1n section 1.1l.2,
namely

8, - 8y = 2¢ ‘f\‘(51 - mo) (1.1.17)

81 - 50 = & 3 (By - By) (1.1.18)
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2~ -
Cc c. O
1 i 00
ey - G == \c - H —== (l.l_al)
11 Y T \S0% »

We have seen that in our problem the region under subpressure Eo
can contain only incident weves, representable by the velocity potential

- i
eia)o[ (xocosq)oﬂros ncpo) /CC]

= (3.0.1)
Thus we have
~
89 = 'i(% /°02)°o
B = 780 = ~1¥ (‘”o /cc%)“’o.
) > (3.0.2)
8g = (7 - LIsg = -i(y - 1)<cpo/c8><bo
ug = -i(a)o /co)cos Podg = g COs P8
S

In the region E, +there 1is a superposition of an acoustic phe-
nomenon (letters with the subscript 1la) and a thermal phenomenon
(subscript 1t).

The formulas (2.1.7) give us for the thermal phenomenon
By =0 034 = -B1y  upy = -1(k0/7ay)sqy (3.0.3)

In the acoustic phenomenon we have

B1g = 7814 (3.0.k)
and in all

CDl=(J_Jl.t+LB]_a=(-1)]_a 91=61t+ela Sl=slt+sl& ul=ul-t+U.la
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The equation (1.1.18) thus yields

Sl.b = -703-((31 - d-)o) (5-0-5)
where J i1s the function defined by the formulas (1.1.11).

This relationship will give us the thermal wave as soon as we have
calculated the acocustic wave.

Introducing this value 814 into the third relation (3.0.3), we
have

uy = 4(k0/ey)3(@y - &) | (3.0.6)

This we insert into (1.1.21) which becomes

(3.0.7_)

We know that the numbers kn/alcl and kn/alco are very smsall.

On the other hand, table II in section 1 shows us that the function J
is always smaller than the functions G and H. Consequently, we can
neglect in equation (3.0.7) the imaginery terms, that is, the terms
stemuing from the thermal wave.

Thus there remains e condition which involves only the acoustic
waves present on both sides of the 'shock-wave front S

Cquyg - G clwl <Ouo - E ﬁm—) (3.0.8)

3.,1. The Reflected Wave

We have to consider in the E, reglon two waves, one incident,
the other reflected, represented by their velocity potentials
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Ql - Bleiﬁbl Et— (xlcqsq33_+yls :an)l)/ Cl] _( 5.1, l)

o = Biei&i[g-(xlcosmiﬁy131n¢i)/ci] (3.1.2)

The EO region, on the other hand, does not contein any wave. The
second term of the condition (3.0.8) is therefore zero.

Assuming the kinematic conditions satisfied (3.0.8), we then have
Bywy (cos @1 - &) + Bjwj(cos @] - G) = 0 (3.1.3)

The smplitudes of the waves are proportional to the factors Bw.
The ratio of the amplitude of the reflected wave and of the amplitude
of the incident wave, that is, the amplitude-reflection coefficient, R,
then is

R = -(cos @y - G)/(cos @] - @) (3.1.4)

Iet us refer to the kinematic relstionship (2.2.1) which connects
the tangents Tq, 'r:'L of the half angles -]2= CPl, -;: CPi; we cen eliminate

CPi, and we obtain

2
(mAl>+'r2 L-G_.2
AL+ Ay 1 TTE"

R = 1+ G  (3.1.5)

2
1+ T§ (1 - Ai> _i-G_

2
1+ A 1+6 1
with Ti < (1- Al)/(l + A;) (incident wave).

For @ =0, ™ is equal to O (normal incidence), Rp 1is equal

to (1 - 6)/(1 + G), which is negative because G 1is greater than 1.
(See table II, section 1.)

For @, =arc cos Ay, T3 = i-.\f(l - Al)/(l + A7) (limiting incidence),
Ryjm 1s equal to -1.
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Since we have in this case mi = @l, wi =, this value signifies

that in the reglon where the two waves ere superimposed on one another
(and which, incidentally, is vanishing) their sum is zero. In other
words, the phenomenon involves only an incident acoustic wave which
stops at S, which 1s actually the case.

Thus, the coefficlent of amplitude reflection is Eonstantly nega-
tive and, in sbsolute value, increases from (G - 1)/(G + 1) to 1 when
®y Iincreases from O to arc cos Aj.

Thus it will be possible, in practice, to observe the reflected
wave gt Iincidences close to the normal only if the shock wave is intense
(¢ clearly larger than 1). N

3.2. The Progressive Refracted Wave

Let us represent the incident wave, situated in Eg, by its velocity
potential ’

0 = BoeinE:-(xocosCPo+yosinq>o)/ cO] -’

and the refracted wave, situated in Ejp, by - -

¢y = Blejwl[%-(xlcqs¢1&y1§in¢1)/ci] .

Starting from the instant where the kinemstic conditions are
satisfied, the exponents of the exponential terms are the same on 8.
The dynamic condition (3.0.8) then gives

IByw) (cos ¢y ~ @) = Bowp(cos ¥ - H) (3.2.1)

We shall compare the amplitudes of the acoustic pressures in the
two-waves, that 1s, we shall form the ratio '

R = Py [Poly = P131®) [PoBeg

——
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the value of which is given by (3.2.1):

lH-cosin

R=ﬁ‘G—coqul

where R 1is equal to Pn/Py and

L. BH+E _
RT E(L + ng) &

(See table II, section 1.)

(3.2.2)

In order to calculate R, one must refer to the kinematic conditions

which give Cpl as a function of Py

We shall give below only the values R as functions of ¢ for
Pq =0 (incident wave parallel to the shock wave and receding before

the latter) and Py = (incident wave parallel to the shock wave and
coming to meet it).

We have in the two cases Cpl = X wWhence

1 E-1
% =0 R =FrEa1
= = H+1
Po=" Ry =ZrG+ 1
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R for
g q)o =0 @O = I
1 0 1
.9 . 0002 1.094
.8 .0010 1.22.
o7 .0035 1.36
.6 .0092 1.55
.5 022 1.82
A .0hg 2.19
.3 .120 2.79
.2 .3%2 3.92
.1 1.29 7.00
05 3.85 12.5
.025 7.85 17.9
(0] 0 o0 -

3.3. The Accompanying Wave

With the Iincident wave beilng represented in the foregoing manner,
the accompanying wave is derived from the potential

o = Ble(iwl'al)t’f[(_ in+t )xl+iﬁ'ﬂ /cl

when the kinematic conditions are satisfied, the botundary condition
(3.0.8) gives i

H - cos CPO
waBy ———

- 1
o G fl)Bl(G - ——mfl'f gl) (3.3.1)

The ratio R which interests us most is the ratio of the acoustic
pressure immedistely behind the shock wave p; = -pl(jml - 8))B; and

of the acoustic pressure in the incident wave Pg = -ipOwoBO.
Teking the relations (2.3.12 to 2.3.17) into account, we obtain

cos ¢ - H i~ 8yfuq
IR 1(Ay - G) - (Byfwy)(2/2y - G)

(3.3.2)
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and from the fact that Sl/wl is equal to Al\J(l - Aﬁ)(cl/w)a -1, we
obtain

IRI=H-—cosq)o A§ - W%
IR (1 - 816)2 + (6 - )W

where

1~ Ao cos wo
cl sin q)o

For illustrative purposes we have performed the calculation of | R}
in the extreme case where w 1is equal to O, that is, cos P is equal
to 1/AO. We have then

;L_H - l/AO

IRly=0 = TR1/A; - G
For @y = arc cos l/AO we obtain

3

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.025 O

|R|

1 1.05 1.15 1.31 1.46 1.71 2.06 2.66 3.86 T.45 14.6 22.8 w

We see that, as in the ‘previous case, the acoustic pressures may
be increased by a significant factor.

L., SUMMARY OF RESULTS

The presence of acoustic waves in one or the obther of the regions

which separste the shock-wave front is manifested in the following
rhenomensa.:

(2) In the region under subpressure Eq in which the shock wave

progresses at a supersonic velocity, no type of reflected or refracted
wave is produced.
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(b) In the region under superpressure El the encounter of an
incident acoustic wave (coming from the E, region or the E; region) .

with a shock wave causes the formation of two waves of different type.
One is an acoustic wave (refracted or reflected depending on the origin
of the incident wave); the other is e thermal wave.

(¢) The thermsl wave 1s not progressive in the first approximation
(that 1s, when the incident acoustic waves are of an ordinary amplitude).
It is therefore motlonless with respect to the gas contained in the
region under superpressure and carried along by this gas in 1its motion
of overall flow. It then moves away from the shock-wave front. This
wave involves spatial periodic vaeriations in temperature and in demsity
but no varietion 1n pressure. It is damped slowly and speriodically.

(d) When the incident acoustic wave is situated in the region under
superpressure, Iin thet same region a reflected acoustic wave, of the
same type as the incident wave, is produced; that 1s, in the case
studied here, a plane, progressive, and uniform wave.

Huygens' construction permits obtalning its kinemastlc characteristics:
direction of propagation, end wave length.

The amplltude of the pressure varlations in the reflected wave 1s
alweys smaller than the smplitude of these variations in the incident
wave.

(e) When the incident acoustic wave 1s situated in the region under
subpressure, & refracted scoustlic wave is produced in the region under
superpressure; the characteristics of the latter wave depend on the phase
veloelty w of the phenomenon produced on the shock front by the inci-
dent wave. The mein characterlstics of the refracted wave are the
following:

(o) In the region under subpressurem'Eo there exist always

two Incidences of plene waves which produce on the shock front the
same phase velocity w and, consequently, in the region under
superpressure Eq the same refracted wave (except for the ampli-
tude ratio).

The observetion of the refracted wave in the region under
superpressure E; therefore does not permit distinguishing

whether this wave has been. produced by one or by the other of
the two possible Incident waves, or by a combination of both.

(B) If the phase velocity w of the disturbance produced on
the shock wave by the incldent acoustic wave 1s larger than a .
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certain 1imiting value Wo (which depends on the intensity of the
shock), the refracted wave is of the same type as the incident
wave: plane, progressive, and uniform. Huyghens' construction
permits obtalning its kinematic characteristics.

The amplitude of the pressure varilations in the refracted
wave may be, depending on the case (angle of incidence, shock
amplitude) smaller than, equal to, or lsrger then the amplitude of
these varilations in the incident wave. All things being equsal,
this emplitude increases with the shock amplitude. )

The increase in amplitude may become very importent in the
case of intense shocks.

(y) If the phase velocity is smaller than the limiting velocity
Wgs which corresponds to incidences situated in a sector the

bounderies of which are functions of the shock amplitude, the
refracted wave agsumes the form of an "accompanying wave." This
wave remeins sttached to the shock wave which it accompanies while
shifting parallel to that wave at the velocity w.

The wave planes (planes of equal phase but not-equal intensity)
are oblique with respect to the shock. Their direction mey be
obtained by & simple geometric comstruction.

The wave amplitude decreases exponentially as one moves away
from the shock-wave front. TImmedlstely behind the shock wave, the
amplitude of the pressure varietions in the accompanying wave
increases with increasing shock intensity. It may be larger than
the amplitude of the pressure variations in the incident wave.

(9) In summary, the presence of ascoustic waves in the region
under subpressure, in whlich the shock wave progresses, mey mani-
fest 1tself behind the shock wave, on the one hand, by a field of
progressive acoustic waves which expand graduslly in the entire
region under superpressure; on the other hand, by the sppesrance
of accompanying waves, that is, of oscillating disturbances which
the shock wave carrles along behind it in its progress.

Both may, in certain cases, involve oscillations of pressure
very much larger than those that existed before the arrival of
the shock wave.

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics
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